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Executive summary 

The field of machine learning has seen tremendous advances the last few years and is 
increasingly being applied to data of all kinds. The ICES WKMLEARN workshop was 
formed to investigate the actual and potential use of such technologies in the context 
of marine sciences and advisory processes, and provide recommendations for how to 
apply these technologies. The workshop was attended by around 30 researchers from 
Europe, United States, and Canada. 

Machine learning algorithms implement models that are adjusted according to data. In 
supervised learning, training data are given along with target values (e.g. classes to be 
identified), while unsupervised learning identifies structure (e.g. clusters) in the data 
itself. Machine learning models can be applied when there is insufficient knowledge or 
resources to develop mechaniztic models. This makes the technology attractive in 
many contexts. However, the many highly publicized successes may have resulted in 
an overly optimistic impression regarding the opportunities and limitations of the tech-
nology. In particular, models can often be opaque or difficult to understand, and it is 
important to be aware that the limitations and pitfalls of machine learning models may 
be poorly understood. 

We identified the following areas that need addressing: 

Expertise 

• Attracting and long-term engagement of expertise in machine learning: expertise is 
attractive for industry and it can be difficult to recruit skilled individuals and 
especially to retain expertise over time; 

• Publication of work: applications of machine learning combine methods from 
computer science with problems from other fields and is, by nature, cross-
disciplinary. It can therefore be difficult to find appropriate venues for pub-
lication, especially since the applications rarely induce computer science 
breakthroughs or new ideas and concepts in fisheries science; 

• Preservation and sharing of acquired knowledge/competence: projects are often 
small and isolated and resulting knowledge is often not retained when the 
project terminates. 

Available data 

• Data quality, organization, and volume: data are often made available in insuf-
ficient volumes and with data qualities adequate for manual curation, but not 
automatic analysis; 

• Data are often collected with insufficient labeling, making it difficult to con-
struct the training datasets needed for supervised learning; 

• There is no centrally organized venue for sharing of architectures, trained 
models, and code for machine learning in marine science. 

Processes 

• Knowing the requirements for the subsequent analyses of data (such as the ac-
curacies required) is needed to guide machine learning applications towards 
areas with high impact; 

• Communication between marine scientists and machine learning scientists is 
needed to increase awareness of the methods and of their potential applica-
tions; 

• Implementation and deployment of developed methods/analyses; 
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• Machine learning applications could often guide data collection and equipment de-
sign, in particular when machine learning is used for data processing. This is
difficult because the scientific communities responsible for data collection
and analysis through machine learning are often distant, both as subjects and
as organizations.

Acceptance, quality 

• Inferring mechanism from machine learning models is difficult, but crucial 
to improve our understanding of the patterns and processes modelled and 
discard the impression that machine learning models are always opaque;

• New methods need to be carefully verified for validity because, while the
requirements of many machine learning methods are not very stringent (as
opposed to classic inferential statistics for example), the methods can still
lead to wrong results if not used properly;

• Machine learning models are different from conventional statistics used by
scientists, and might be distrusted or avoided due to unfamiliarity.
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1 Opening of the meeting 

The meeting was attended by around 30 researchers from Europe, United States, and 
Canada. The age distribution of participants reflected how machine learning is appeal-
ing to early career fisheries scientists and ecologists. The participants were diverse in 
terms of age and education: computer science, mathematics, statistics, engineering, and 
GIS. Machine learning knowledge was patchy and the majority of participants had ac-
quired skills through self-learning, such as online courses. Other participants were in-
volved in machine learning research projects through university collaborations. The 
preferred programming languages were Python, Java and R; R being preferred by fish-
eries scientist and Python by computer scientists. 
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2 Specific responses to Terms of Reference 

2.1 ToR a 

Review ICES Fisheries Science processes to understand where machine learning 
and/or deep learning may be of greatest benefit, including: i) Survey and data col-
lection, ii) Data handling, iii) Analysis and assessment, iv) Review and advice, v) 
Check degree to which expert groups are meeting their terms of reference, vi) Taking 
a forward look and consider emerging topics. 

2.1.1 Large-scale data analysis 

Many recent and highly publicized developments in machine learning include so-
called deep learning algorithms, typically convolutional neural networks. These meth-
ods show great potential, in particular in cases with: 

• Large data volumes (and potential for further increase)  
• Regular data (matrices or time-series)  
• High dimensional data  
• Labor intensive analysis  
• Labeled data availability (to be used as training sets) 

However, convolutional neural networks are only a subset of all the machine learning 
methodologies that are being applied successfully in fisheries science. A large selection 
of supervised, unsupervised and semi-supervised learning methods and architectures 
can readily be applied to many important data types. A clear advantage of models like 
decision trees or Bayesian networks are that they deal with uncertainty explicitly, 
providing an intuitive interface to data in terms of transparency and comprehensibility 
of the final model. The intuitive properties of such methods enhance the confidence of 
domain experts on their forecasts (Fernandes et al., 2010; 2013; 2015).  

Camera equipment can be deployed in a multitude of situations, including underwater 
observatories, trawl cameras, UAVs, lab equipment, in the monitoring of commercial 
fisheries, etc.. While specialized equipment can be expensive, cheap “action cameras” 
are also used by researchers. In either case, the cost of manual curation by a human 
expert will easily dwarf equipment costs, making automation necessary to exploit the 
full potential of the technology. 

Acoustics data are one of the most important data sources for fisheries advice, and 
while volume is already a challenge, new equipment types exacerbate this by increas-
ing data resolution and dimensionality. Multibeam echosounders replace traditional 
two-dimensional data with three-dimensional data, while multifrequency and broad-
band equipment expand the measured signal from one to multiple values, or to a con-
tinuous frequency spectrum response. The resulting data are difficult to visualize ef-
fectively and hence difficult for a human expert to interpret. Automated solutions will 
more easily be able to exploit the information in the data. 

2.1.2 Ecosystem and complex models 

Many machine learning models like neural networks have the ability to capture com-
plex, non-linear relationships in the input data. Such relationships often occur in eco-
system models, which are crucial building blocks for the implementation of ecosystem-
based fisheries management. There is a need for models that can capture these complex 
dynamics and merge high-dimensional data from different sources. 
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Ecosystems predictions are rarely used in fisheries management or advice, despite the 
drastic population fluctuations potentially caused by environmental factors. Ecosys-
tem-based fisheries management, enabled by machine learning, could alleviate the 
stresses from the traditionally boom-or-bust economy associated with many fishing 
industries. 

2.1.3 Data quality control 

Data going into the ICES systems and databases is often not collected with a view to 
manual curation and analysis. Collection and contribution tend to conform to varying 
and local standards or practices, and can contain errors or require interpretation. Ma-
chine learning techniques, such as anomaly detection algorithms or Bayesian networks, 
can help to (automatically) find potential errors in the data and establish the overall 
quality of the import data, and e.g. to flag data that exceeds a certain error threshold. 
This then can be used to have a closer (manual) look at the data, improving overall 
quality while limiting the required human effort. 

2.1.4 In regards to the ICES fisheries process 

The workshop presented an overview of the ICES advisory processes by a number of 
ICES staff members (e.g. ACOM and TAF processes), a Norwegian perspective on data 
preparation for assessments, and the US perspective on optical data acquisition oppor-
tunities that might lend themselves to machine learning applications. The focus was 
mainly on identifying the bottlenecks, both in the sample processing of current advi-
sory processes and scientific advancement in the methodology of assessments.  

The opportunities for machine learning impacts identified in this session could be 
grouped or summarized in several different ways by the ecosystem components of in-
terest, by the current level of developments, or by the magnitude of the impact of ma-
chine learning models. To aid in the prioritization of these opportunities, however, it 
seems useful to prioritize on the basis of the respective role in the advisory process. 

Presentations summarized the activities of the current routine advisory process in the 
form of information flow/pipeline system including the process of providing advice 
and the TAF procedure. Clearest / easiest opportunities for machine learning applica-
tions presented themselves in the sample analysis or data preparation part of the pro-
cess as opposed to the data analytical part (assessment procedure). The benefits of the 
advisory process seemed to be the rapid nature and the reproducibility of choices, and 
if new methodologies could be spliced into the modular pipeline set up. The seamless 
replacement of human evaluators, the frequent availability of annotated images which 
could lend themselves to the development of training datasets as well as detailed doc-
umentation on the level of human performance indicators make these ideal opportu-
nities for training supervised learning approaches. Examples include: 

• Age data (surveys and catch) 
• Fish egg abundance from surveys 
• Nephrops burrow counts from surveys 
• Scallop count and size distributions from surveys 
• Species identification / quantification mainly in bycatch or catch data 
• Acoustic survey interpretation (scrutineering) 

Likely longer-term opportunities where additional work is required to evaluate the 
performance of machine learning methods are those where new types of samples/in-
formation are to be included in the advisory process. These methods usually require 
additional effort both in the development of the training data and the peer-review of 
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the methods. Such opportunities aim to include environmental/ecosystem information 
into the advisory process, as well as new data methods for single species assessment 
in the benchmark process and external estimation of catchability. Less fixed/traditional 
advisory processes at least partially still in development such as ecosystem assess-
ments and ecosystem overviews could be transformed by these methods. Examples 
Include: 

• Biodiversity through automated identification of samples, zooplankton, phy-
toplankton 

• Size spectral / functional type analysis of zooplankton 
• Identification and abundance of species on untrawlable ground 
• Higher spatial resolution of survey trawl samples to aid acoustic scrutineer-

ing 
• Benthic habitat classification or status assessments from multibeam or video 

transect information 
• Environmentally influenced forecast predictions 
• Multispectral satellite analysis to evaluate changes in environmental or eco-

logical conditions 

2.2 ToR b 

Identify areas of marine science, data and advice within the ICES remit where ma-
chine learning/deep learning has already been applied. 

A large number of projects and ongoing efforts are now experimenting and developing 
prototypes of machine learning systems in marine sciences. Several ongoing projects 
were presented by the workshop participants, and the following topics were high-
lighted: 

2.2.1 Electronic monitoring and vessel monitoring systems 

Within the last decade, Electronic Monitoring (EM) of commercial fishing vessels has 
emerged as a cost-efficient supplement to the existing expensive observer programs 
documenting catches in commercial fisheries. Such monitoring can be performed using 
existing data sources like AIS, or through special equipment in the form of a Vessel 
Monitoring System (VMS). These systems collect data by video surveillance of the fish-
er's catch as well as logging equipment use.  

Machine learning applications to electronic monitoring of fishery-dependent data are 
of increasing interest to management bodies in the United States and Europe. It has the 
potential to reduce the cost associated with observers and streamline the processing of 
video data. NOAA Fisheries’ Alaska Fisheries Science Center has just completed a pilot 
project using machine learning techniques to analyse video data from a chute system 
installed to monitor halibut bycatch during release from trawler catches, and they were 
able to identify fish species to a high degree of accuracy. NOAA Fisheries has also just 
created an internal national machine learning working group to further evaluate ma-
chine learning in the context of electronic monitoring. Concurrently, vendors from 
around the United States are developing techniques to better incorporate machine 
learning into the video review of electronic monitoring data. One such vendor is work-
ing with the electronic monitoring data of the groundfish fleet in New England. By 
targeting specific image analysis goals such as species identification, count, and length 
measurement, they were able to run a successful data science competition to demon-
strate the feasibility of semi-automated systems. The outcome of this process was a 
project to establish an open source library of data, algorithms, and software modules 
available to regulators, EM providers, and other interested parties. Such a library will 
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spur adoption of semi-automated video review, and help alleviate resource con-
straints. In Europe, automated species recognition algorithms have been developed. 
However, follow up, deployment, and implementation of automated video review 
should be improved. Challenges include establishing the process of using machine 
learning for the purpose of evaluating EM data and more generally facilitating the up-
take of EM in commercial fisheries to improve data collection. 

The recent introduction of Automatic Identification Systems (AIS) for identification 
and tracking vessels presents an opportunity to quantify pressure on the marine eco-
system deriving from human activities such as shipping and fishing. Identifying fish-
ing activities from AIS data alone (such as position, speed, and bearing) may be possi-
ble, alternatively, it can be used in conjunction with more extensive monitoring sys-
tems (VMS) and Logbook data. Several comparisons are starting to be published 
(McCauley et al. 2016; Eigaard et al., 2017). 

2.2.2 Time-series forecasting and reconstruction 

Time-series forecasting work was presented by several scientists. In particular, an-
chovy recruitment forecasting in the Bay of Biscay (Fernandes et al., 2010) is an example 
of a successful application that influenced advice (Fernandes et al., 2009a) to open the 
fishery, together with other scientific evidence (e.g. acoustics survey). This work was 
applied to seven species in the North Atlantic (Fernandes et al., 2015). The use of Bayes-
ian networks was expanded to use multidimensional Bayesian networks to double the 
chance of correctly forecasting the recruitment of three species simultaneously follow-
ing an ecosystem-based approach (Fernandes et al., 2013). These methods were also 
combined with a mechaniztic model (e.g. gadget) to make forecasts to the year 2020 
(Andonegi et al., 2011) which correctly forecasted the last peaks in anchovy recruitment 
6-8 years before they occurred. Recent machine learning advances in combination with 
optimization methods are promising to balance the performance of forecast and the 
earliness of those forecasts (Mori et al., 2017). Traditional Bayesian networks ap-
proaches and novel semi-supervised approaches are being applied to coastal litter fore-
casting in the LIFE-LEMA project (Hernández-González et al., 2018).  

Similar work in this regard included preliminary research showing that simple neural 
networks have the potential to simultaneously forecast changes in six fish functional 
groups of the Grand Bank, Northwest Atlantic, using small sets (i.e. 2 to 5) of fishing 
and environmental indicators as predictors. 

2.2.3 Optical and acoustic data from surveys 

Survey data looking at fish stocks and habitat are collected with optical and acoustic 
technologies. The processing of these data are costly from both a monetary and human 
effort perspective, but efforts are underway to use machine learning to streamline these 
processes and enhance capabilities in analysis and visualization. 

Machine learning algorithms and networks for automated image analysis are being 
trained using datasets that incorporate a wide array of fisheries species and habitats. 
NOAA Fisheries is in early stages of implementing an automated image analysis open 
source software toolkit to process the optical data used in stock assessments. Results 
so far vary based on the dataset used to train the algorithm; for example, optical data 
with homogenous habitat and fewer species of fish are easier to target than more com-
plex systems. Datasets encompassing a broad range of underwater conditions and spe-
cies and collection consistency are critical when applying machine learning to optical 
survey data. 
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Other advancements in machine learning for non-government fisheries data include 
pilot projects in preprocessing data (i.e. data filtering), automatic species identification 
within a single frame, species identification and tracking within a video frame and 
measuring of individual fish for assessments and enforcement purposes.  

There is also an effort in using machine learning to assist in the laborious process of 
aging fish by reading otoliths or scales. Images of sectioned otoliths are analysed by 
algorithms that automatically count annuli and produce an age estimate for the indi-
vidual. The error can be small, but the interpretation of the error in the algorithm-pro-
duced age vs. true age identified by the reader has important implications when con-
sidering the biology of the species. Error around the age at maturity for a species could 
misinform management decisions. 

The UK has begun pilot work on using machine learning algorithms on habitat classi-
fications using multibeam sonar. Several groups in Europe are trying machine learning 
applications with fisheries acoustics. Effort is typically focused on species differentia-
tion and size estimation, often combined with imaging systems. Imaging systems are 
typically used in association with trawls and offer a spatial resolutionsuitable for com-
bining with acoustics. Machine learning within acoustics is well suited for supervised 
manner (i.e. trained with ground-truthed examples) since the processing usually in-
volves manual labeling of large amounts of data. This will help predict fish school echo 
types or species, and potentially decide when to deploy trawls that will result in im-
proved classification. In addition, models could be used in an unsupervised manner to 
cluster three-dimensional fish data without any expert a priori. This could unveil new 
structure in fish schools and fish spatial distributions. 

In AZTI (Spain) there have been different examples of applications of machine learning 
to acoustic databased on narrowband echosounders in the last years. In the Bay of Bis-
cay, the temporal series of abundance of the juvenile fraction of anchovy population 
(2003-2015) was used to predict recruitment (Boyra et al., 2013) and the aggregation 
patterns of anchovy were used to explain spatial differences in behavior for this species 
(Boyra et al., 2016). Besides, image processing techniques were applied to sonar screen-
shots to automatically detect bluefin tuna from the commercial live-bait tuna fishing 
fleet (Uranga et al., 2017). In tropical tuna fisheries, there have been developments to 
improve automatic abundance estimation from acoustic data from echosounder buoys 
in FADs (Lopez et al., 2016) and to increase the size and species discrimination from 
sonar and echosounder data (Boyra et al., 2018). In addition, there is ongoing research 
to develop machine learning techniques to deal with the challenging, recently released 
broadband echosounders. These allow new ways of discriminating species and size of 
fish based on the analysis of continuous frequency-response patterns, but at the cost of 
handling much larger datasets (Demer, 2017). 

2.2.4 Plankton: imaging technologies 

Plankton includes the larval stages of many harvested species, is a source of food for 
many others, and can act as an indicator of good overall ecosystem status (sensu Marine 
Strategy Framework Directive). The biomass of planktonic organisms is often assessed 
with nets, bottles and microscopic counts. This is time-consuming and the samples do not 
contain important but fragile taxa, which are damaged by nets. In addition, these 
catches are often not sufficient to resolve processes at the small spatial and short temporal 
scales that are relevant to planktonic organisms. This has led to the development of 
instruments that take images of plankton at high resolution and frequency. Some scan-
ners or in-flow cameras can speed up the processing of plankton net or pump samples 
(e.g. ZooScan, FlowCam, ZooCam). Some underwater cameras take images of plankton 
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directly in situ and can therefore describe fragile species that are destroyed by net sam-
pling (e.g. UVP, LOKI, ISIIS). 

These instruments produce an enormous amount of digital images (e.g. typically, one 
ZooScan: 1 billion pixels/year, UVP: 8.6 billion pixels/year, ZooCam: 7.2 trillion pix-
els/year, ISIIS:14 trillion pixels/year). An important bottleneck is processing this massive 
data. Most devices produce grey scale images with a quite uniform background and 
semi-automated processing systems have existed for more than ten years (e.g. ZooPro-
cess, EcoTaxa, ZooImage). They process input images, extract objects of potential in-
terest, measure morphological characteristics of these objects, and offer some classic 
machine learning tools (such as Random Forests) to propose an identification, based 
on a manually curated training set of images. 

These systems are now used routinely (Ortner et al., 1979; Benfield et al., 2007; Irigoien 
et al., 2009; Gorsky et al., 2010; Uusitalo, 2016). They commonly reach 60 to 70% overall 
accuracy for classifying plankton images in about 40 groups (albeit with tremendous 
differences among groups). This accelerates the processing of samples compared to 
manual sorting but human curation is still required to increase data quality or detail, both 
of which are mandatory to inform ecological studies and advisory processes. 

Recent developments, such as deep learning approaches, will further accelerate this pro-
cess. Plankton images from quantitative imaging instruments lend themselves very 
well to these new techniques and a few studies are emerging, with promising results 
(<5 published papers, one open implementation in EcoTaxa). These techniques could 
improve classification and also perform segmentation and streamline the overall image 
analysis. 

Large images datasets can also benefit from the help of citizen scientists: volunteers from 
the public who are presented images through a website and classify them. The Plank-
tonID initiative (https://planktonid.geomar.de/en) actually intertwines machine learn-
ing to suggest identifications and citizen science to validate them. 

Finally, with such large datasets, it is important to consider that classifiers do not out-
put a yes/no answer but a continuous score which can be used to guide human curation 
(focus on the lowest scores) or systematically discard unsure classifications and quickly 
provide data, which, albeit incomplete, can be sufficient for some purposes. 

2.2.5 Modelling ecosystem processes 

Ecological systems are typically influenced by multiple drivers that may combine cu-
mulatively or interactively often resulting in threshold or non-linear responses. Inves-
tigation of relationships between ecosystem processes and external drivers are re-
quired to build an understanding of the mechanizm underlying those responses. Re-
gression models, which can allow for non-linear relationships, are often employed but 
given the complexity of the ecological system may fail to detect deep interactive effects, 
non-linear or abrupt changes. Such methods often make assumptions on the distribu-
tion of data and rely on a single parsimonious model imposing limitations on the form 
of underlying relationships. These limitations can be overcome by introducing more 
flexible machine learning methods. 

When machine learning analysis was applied to phytoplankton growth, the model was 
able to describe relationships with environmental variables that are known and veri-
fied experimentally (vouching for its relevance) (Thomas et al. 2018) and, at the same 
time, uncovering interactions between these variables that are difficult and costly to 
test experimentally. 
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Machine learning methods can also be used to assist mechaniztic prediction models for 
marine ecosystems that are based upon an understanding of the underlying dynamics. 
Due to influences of climate changes, marine environments are now more than ever 
being subjected to conditions that are outside their previously experienced time-series. 
This forces traditional regression, as well as machine learning models, to extrapolate 
rather than to interpolate. This can be a risk for both approaches, but integrating the 
machine learning approach with insights from ecological theory and lab experiments 
can mitigate this risk. This can be done by developing the underlying understanding 
necessary for mechaniztic models using machine learning analysis techniques, which 
are well-suited to identifying complex relationships in unwieldy datasets. 

With a shift towards ecosystem-based management, incorporation of complex ecosys-
tem models is paramount. Machine learning is an invaluable tool for both exploratory 
analysis and modelling ecosystem processes necessary for incorporation of these com-
plex ecosystem variables into fisheries management. 

2.2.6 Ecological indicators: WFD and MSFD 

Machine learning has been used on work related to estimate or model ecological indi-
cators. For example, Bayesian networks have been used in the Gulf of Finland in rela-
tion to the Water Framework Directive (WFW) (Fernandes et al., 2012). Recently, a 
proof-of-concept and a review of the potential for automatic classification of plankton 
for Marine Strategy Framework Directive (MSFD) indicators have been published (Uu-
sitalo et al., 2016). However, not all the attempts to use machine learning to model eco-
logical indicators have been successful, probably due to sparse data with not enough 
spatial and temporal resolution (Rodríguez et al., 2012). 

Machine learning also has the potential to guide the selection of the most influential 
pressures indicators for a given set of response indicators. For example, several differ-
ent methods exist for quantifying predictor importance from neural network analyses 
(e.g. see Olden et al., 2004 and references therein; deOna and Garrido, 2014). A work-
shop presentation highlighted one of these methods (product of standardized weights; 
e.g. Olden and Jackson, 2006) for selecting the most influential pressures on the Grand 
Bank fish community over three time periods. Such results can feed into other scientific 
analyses and modelling studies, such as those quantifying thresholds or “tipping 
points” for ecosystems under multiple stresses (e.g. Large et. al., 2015). 

2.2.7 Spatial planning and decision-making 

Machine learning, and more specifically Bayesian networks are being used for marine 
spatial planning. Other decision-making tools based on Bayesian networks have not 
considered the spatial component. Bayesian networks in combination with GIS tools 
are being used to: (1) analyse conflicting uses (e.g. when we have an area declared as 
interest for aquaculture and we wish to know which fleets would be affected and how 
to reallocate them with minimal impact to them); (2) develop new activities such as 
wind energy; and, (3) consider other social and economic aspects (Galparsoro et al., 
2009; Galparsor et al., 2010; Galparsoro et al., 2015; Pascual et al., 2011; Cocoli et al., 2018). 

2.2.8 Text/literature analysis 

The workshop has shown that machine learning has useful applications for textual data 
too, such that is found in the form of reports and scientific publications. Machine learn-
ing can provide automatic ways of analysing large collections of documents, hundreds 
or thousands, and infer topical content from these documents (Syed & Weber 2018; 
Syed et al., 2018), or provide a sense of the document content by word frequency. The 
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topical content provides an overview of topics or themes that are present in these doc-
uments, whereas a word frequency count can help in quickly finding relevant docu-
ments. Such analysis can help in the manual task of reading and understanding the 
documents and can save time and effort. The automatic analysis can then be used for 
document classification, searching for documents, comparing documents, quality as-
surance of document content. 

2.2.9 Bid data and machine learning 

The difficulties for direct observation of biological interactions and mechanizms have 
pushed marine science towards the development of large bodies of measurements 
from where the underlying mechanizms can be deduced. In fact, major international 
programs (IGBP, JGOFS, GLOBEC, ICES, and others), engaging thousands of marine 
scientists throughout the world over the past decade, have delivered a massive amount 
of information on the biogeochemical foundations, functioning and structure of marine 
foodwebs. Parallel technological developments, ranging from satellite imagery to au-
tonomous underwater vehicles, have increased by orders of magnitude the resolution 
and amount of data available on relevant properties of the ocean ecosystem. However, 
there are still challenges in the use of this huge amount of diverse data providing so-
lutions to final users. Other science domains had similar recent technological and data 
monitoring advancements which have led to a deluge of data over the past two dec-
ades. The term big data were coined to capture the meaning of this emerging trend (Hu 
et al., 2014). In addition to its sheer volume, big data also exhibit other unique charac-
teristics as compared with traditional data. For instance, big data are commonly un-
structured and requires more real-time analysis. This development calls for new sys-
tem architectures for data acquisition, transmission, storage, and large-scale data pro-
cessing mechanizms (Hu et al., 2014). Big data techniques enhanced by machine learn-
ing methods can increase the value of such data and its applicability to society, indus-
try, and management challenges. Big data methodologies allow real-time updating and 
application of models required to satisfy the fast-paced real-world needs of industry 
and managers. H2020 project Databio (https://www.databio.eu) aims to use the inno-
vative ICTs and information flows in order to provide a streamlined Big Data Infra-
structure for data discovery, retrieval, processing, and visualizing in fisheries (e.g. tuna 
pilot; Fernandes et al., 2017) and other bioeconomy sectors. In this workshop several 
times data integration approaches and data processing pipelines where presented that 
can be considered Big data approaches. 

2.2.10 Missing data 

Missing data are a common problem in fishery surveys. It has been a common practice 
for countries to “borrow” data from other countries to fill in their gaps when submit-
ting data for stock assessment. While this problem can better be handed by using tra-
ditional statistical models, machine learning approaches can be explored especially 
where complete variables are missing. An example of a machine learning based 
method for data missing imputation is the supervised method CMean (Kononenko et 
al., 1984; Delavallade and Dang, 2007; Fernandes et al., 2013) based in information the-
ory. 

Time-series data are crucial in stock assessment yet this is lacking in some countries on 
some variables. Machine learning was used to reconstruct a time-series for recreational 
fishers. Other areas where machine learning can be explored include the reconstruction 
of time-series for discards.  
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Estimating missing biological information in the commercial fishery is one of the main 
work done by stock coordinators before data are fed through the stock assessments 
models. The RDBES will in future replace InterCatch and the RDB and will incorporate 
statistically sound raising and estimations by using design-based sampling data. It was 
found that machine learning will best serve in anomaly detection on the submitted data 
and no direct recommendation was made on any known machine learning algorithm 
that could improve this process. 

2.3 ToR c 

Identify options to better include social scientists into ICES processes, through the 
use of machine learning/deep learning. 

The composition of participants was such that the workshop was unable to adequately 
address this term of reference. Topics that were adressed and of relevance to this ToR, 
include the Bayesian networks applied to spatial planning and ecosystem services 
work , and the work presented in text mining presented in previous section. Similarly,  
so-called sentiment analysis that aims to analyse opinions, sentiments, and emotions 
expressed in text (Ortigosa-Hernández et al., 2012), may be relevant. 

2.4 ToR d 

Recommend ways forward, particularly to include experts from outside ICES, and 
consider further areas of work within ICES where machine learning/deep learning 
would be particularly applicable. Future data storage options to facilitate machine 
learning/deep learning could also be considered. 

2.4.1 General machine learning challenges 

Machine learning methods have great potential for applications in fisheries science but 
effective adoption is limited by several factors that need to be overcome. This concerns 
not only the methods themselves, which can often seem opaque or are not well under-
stood, but also the necessary data sources, as well as deployment and how methods 
are integrated into the existing advisory and scientific process. To ease collaboration 
and avoid duplication of effort, common data frameworks are necessary, including 
data standards, APIs, and common databases.  It is important to tie close connections 
between informatics and marine sciences, both to leverage new methods as they are 
developed, and to stimulate machine learning research in directions relevant to the 
marine sciences.  Automating the interpretation of data will make it easier to combine 
and compare data from different sources. Interdisciplinary approaches, e.g. combining 
imaging and genomics, should therefore also be encouraged. 

We have identified the following areas that need addressing: 

Expertise 

• Aattracting and long-term engagement of expertise in machine learning: expertise 
is attractive for industry and it can be difficult to recruit skilled individuals 
and especially to retain expertise over time; 

• Publication of work: applications of machine learning combine methods from 
computer science with problems from other fields and is, by nature, cross-
disciplinary. It can therefore be difficult to find appropriate venues for pub-
lication, especially since the applications rarely induce compute science 
breakthroughs or new ideas and concepts in fisheries science. 
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• Preservation and sharing of acquired knowledge/competence: projects are often 
small and isolated and resulting knowledge is often not retained when the 
project terminates. 

Available data 

• Data quality, organization, and volume: data are often made available in insuf-
ficient volumes and with data qualities adequate for manual curation, but not 
automatic analysis. 

• Data are often collected with insufficient labeling, making it difficult to con-
struct the training datasets needed for supervised learning 

• There is no centrally organized venue for sharing of architectures, trained mod-
els, and code for machine learning in marine science 

Processes 

• Knowing the requirements for the subsequent analyses of data (such as the ac-
curacies required) is needed to guide machine learning applications towards 
areas with high impact 

• Communication between marine scientists and machine learning scientists is 
needed to increase awareness of the methods and of their potential applica-
tions 

• Implementation and deployment of developed methods/analyses 
• Machine learning applications could often guide data collection and equipment de-

sign, in particular when machine learning is used for data processing. This is 
difficult because the scientific communities responsible for data collection 
and analysis through machine learning are often distant, both as subjects and 
as organizations. 

Acceptance, quality 

• Inferring mechanizm from machine learning models is difficult, but crucial 
to improve our understanding of the patterns and processes modelled and 
discard the impression that machine learning models are always opaque; 

• New methods need to be carefully verified for validity because, while the 
requirements of many machine learning methods are not very stringent (as 
opposed to classic inferential statistics for example), the methods can still 
lead to wrong results if not used properly; 

• Machine learning models are different from conventional statistics used by 
scientists, and might be distrusted or avoided due to unfamiliarity. 

2.4.2 Risks and opportunities 

From the advisory perspective there are significant benefits and risk of machine learn-
ing. These are not homogenous across all types models and given the diversity of ma-
chine learning approaches, this summary is a general one and may not apply to all 
specific cases. The clear benefits are the improved consistency of supervised learning 
techniques compared to human experts, and the ability to deal with larger data vol-
umes. Unsupervised learning mechanizms lack this consistency as by definition they 
change their characteristics with new data which may have unexpected consequences 
on the remainder of the advisory process through time, e.g. revision of historic data. 
When analysing samples, for example otolith images to ages, humans can easily quality 
control the process making it suitable for the advisory process. 

Predictive models including those that investigate unknown relationships between en-
vironmental variables are currently more difficult to diagnose than traditional models 
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due to an unfamiliarity of the majority of environmental practitioners. Outcomes are 
more difficult to verify by humans. There is a perception that machine learning is in-
sensitive to this risk and often seen as a cure-all. However, there is a developing un-
derstanding that these models suffer also from the problems of over parameterization 
and co-linearity of variables. These models are currently less suitable for the advisory 
process but should be considered in the scientific process. The focus here should be to 
develop greater familiarity with the model characteristics and the development of bet-
ter diagnostic on the risks of over parameterization and col-linearity of variables. 

Machine learning applications and in particular deep learning methods, have the pos-
sibility to find highly complex patterns in data. However, in general, the methods are 
data greedy and it is more difficult to explain how machine learning methods achieve 
their objective, compared to more traditional statistical models. 

We must be wary of trusting new models blindly, since their performance or the as-
sumptions that they make can change over time. A clear example of the dangers is the 
rise and failure of flu prediction by Google (Ginsberg et al., 2009; Lazer et al., 2014). 
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3 Conclusions and way forward 

Machine learning has been successfully applied to data analysis in almost every field 
and has a large potential also for fisheries sciences, which is heavily based on data. 
End-users should identify areas and data types of highest relevance to or impact on the 
advisory processes, and the required or desired accuracy of analysis to guide machine 
learning research. Improving current processes (rather than establish new ones) is 
quick wins. However, machine learning techniques cannot just be applied and ac-
cepted after they give good predictions on a given dataset (which is often what is em-
phasized in their applications). To provide solid, long lasting advice one must investi-
gate how they work and whether the mechanizms that they infer make sense. Results 
and processes to get to these results should be emphasized equally in further research. 

Some ways to move forward: 

• Provide a venue for sharing knowledge and experience, publishing (organize 
a conference or special issue on machine learning). 

• Stimulate or organize training on using machine learning for fisheries scien-
tists. 

• Summer school. 
• Encourage long-term research in machine learning specifically targeting ma-

rine sciences (collaboration computer science and marine biology). 
• Provide a central data storage for images and their annotations. Plankton, but 

also fish, benthos, otoliths, and scales. Care to make creation of training da-
tasets easy, and publish such training sets. 

• Kaggle competition. Data science competitions are good for raising aware-
ness and engaging citizen scientists, but the costs span more than just the 
prizes, and usually result in outputs that require significant effort to turn into 
usable products. 

• Provide a model zoo for trained models aimed at marine science problems.  
• Shared Github or bitbucket repository for code. 
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Annex 2:  Meeting agenda 

MONDAY 16 APRIL 2018 

Time Name(s) Introduction 

1300 Shaheen Syed, 

Ketil Malde, 

Julie Krogh Hallin 

Welcome and practical information 

1315  Round table introductions 

1415  Coffee break 

1430 Ketil Malde, Shaheen Syed Recent developments in machine learning and 
current state of the art. 
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Romagnan 

Acoustics in the framework of integrated ecosystemic 
surveys - data types, strength and weaknesses. 
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 Benjamin 
Woodward 

Underwater optical trawl surveys for fisheries popu-
lations 

 Josean Fer-
nandes 

Acoustics, sonar and underwater imagery for stock 
assessments 

 Ketil Malde The Deep Vision trawl camera and automatic fish spe-
cies recognition 

 
1500 Coffee break 

 

 Name(s) Fisheries monitoring 

1530 Lisa Peter-
son 

Electronic monitoring of commercial fishing vessels in the 
U.S. 

 Maurizio 
Gibin 

Estimating fishing effort using AIS and data fusion as well 
the consequent fishing effort validation through VMS. 

 Edwin van 
Helmon 

Current state of REM in the EU, summary of project and 
research, technical limitations, strengths, weaknesses of 
REM over the last 10 years. 

 Benjamin 
Woodward 

Bycatch/scallops 

 Kristian 
Schreiber 
Plet-Hansen 

ML/DL for CCTV 

 Danielle 
Dempsey 

Using neural networks to model fish community biomass 
on the Grand Bank, Newfoundland (PhD research). 

  Discussion and summary 
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THURSDAY 19 APRIL 2018 

Time Name(s) Ecosystems 

0900 Olga 
Lyash-
evska 

Explaining trends in length-at-age of herring using 
gradient 

boosting regression trees. 

 Ketil 
Malde 

Predicting the age of Greenland halibut from otolith 
images 

 Josean Fer-
nandes 

Decision Support Tools, ecosystem indicators and spa-
tial planning with Bayesian networks. 

 Benjamin 
Wood-
ward 

Underwater visual imagery. 

 Dionysios 
Krekoukio-
tis 

Assessing the Role of Environmental Factors on Baltic 
Cod Recruitment using Artificial Neural Networks 

 

1030-1100 Coffee break 

 

 Name(s) Text mining - human data 

1100 Shaheen 
Syed 

Topic modelling with Latent Dirichlet Allocation. 

 Carlos Pinto, 
Sarah Lousie 
Millar 

Text Mining of the ICES knowledge base. 

  Discussion 

 
1230-1330 Lunch 
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 Name(s) Working with missing data 

1330 Esha Mo-
hamed 

Using machine learning techniques to reconstruct 
time series for recreational fishers: our experiences. 

 Kadji Okou, 
Henrik 
Kjems-
Nielsen 

Regionally coordinated database for Fishery assess-
ment in the North Atlantic Ocean, the North Sea and 
the Baltic Sea. 

1430 Discussion and workshop summary 

 

FRIDAY 20 APRIL 2018 

0900- Show your application / code / architecture 
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Annex 3:  Terms of Reference 

WKMLEARN - Workshop on Uses of Machine Learning in Marine Science 

2017/2/EOSG11 

A Workshop on Uses of Machine Learning in Marine Science (WKMLEARN), co-
chaired by Ketil Malde*, Norway and Shaheen Syed*, Netherlands/UK, will be estab-
lished and will meet in ICES HQ, Copenhagen, 16-20 April 2018 to: 

a ) Review ICES Fisheries Science processes to understand where machine 
learning and/or deep learning may be of greatest benefit, including: 
i ) Survey and data collection, 
ii ) Data handling, 
iii ) Analysis and assessment, 
iv ) Review and advice 
v ) Check degree to which expert groups are meeting their terms of refer-

ence 
vi ) Taking a forward look and consider emerging topics; 

b ) Identify areas of marine science, data and advice within the ICES remit 
where machine learning/deep learning has already been applied; 

c ) Identify options to better include social scientists into ICES processes, 
through the use of machine learning/deep learning, ; 

d ) Recommend ways forward, particularly to include experts from outside 
ICES, and consider further areas of work within ICES where machine learn-
ing/deep learning would be particularly applicable. Future data storage op-
tions to facilitate machine learning/deep learning could also be considered. 

WKMLEARN will report by 31 May 2018 for the attention of the Advisory and Science 
Committees. 

Supporting information 
  

Priority The Workshop will explore an area of science and technology 
that is rising rapidly in its ability to support science and which 
has the potential to replace a number of traditional activties 
within the fishery science process.  ICES needs to understand 
how best to respond to theese developments. 

Scientific justifica-
tion 

Term of Reference a) 
Machine Learning (and/or Deep Learning) can be used in many 
ways – from text analysis to finding hidden patterns in large da-
tasets, to analysing images and video, and to deriving analytical 
algoriths. All forms of machine learning will be considered in 
examing each stage of fish stock assessment and advice. 
Term of Reference b) 
Machine Learning has been applied to determining numbers of 
salmon lice on farmed fish, identifying fish species from trawl cam-
eras, interpreting fish scales, classifying fish behavior, and interpreting 
acoustics data through use of image analysis. It has also been ap-
plied to analysis of marine science literature to determine trends 
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in research and publication. Participants who can provide fur-
ther examples will be specifically sought. 
Term of Reference c) 
Among the challenges in bringing more social science into the 
traditional fisheries science and advice process has been the lack 
of a common language – with specialist terms being used in 
both areas that may not have any meaning elsewhere. Machine 
learning can help overcome such barriers. One option might be 
to match trends in social science data and publications with 
trends in fisheries science literature. The overall aim would be 
to facilitate the further inclusion of the social sciences in ICES 
processes. It may also be useful to identify research areas that 
can be addressed through multi-/inter-disciplinary computa-
tional social science approaches to study social processes rele-
vant to fisheries. 
Term of Reference d) 
The Terms of Reference for this workshop have been kept delib-
erately constrained so as not to overload its work.  Lessons 
learned from the workshop should be considered and a path 
forward recommended. 

Resource require-
ments 

It is hoped that participants will have sufficient access to com-
puting resources so as to not require any further input. 

Participants Participants will be sought from as wide a community as is pos-
sible. We would hope to attach scientists with skills in survey-
ing, stock assessment, social aspects, experience in ICES pro-
cesses including advice and inter-disciplinary scientists. Scien-
tists with access to complex datasets would be welcomed also. 
Early career scientists with skills in machine learning would be 
particularly welcome 

Secretariat facili-
ties 

The Atlantic Room for 3 days, and the usual welocome Secretar-
iat support. 

Financial No financial implications. 

Linkages to advi-
sory committees 

Directly linked 

Linkages to other 
committees or 
groups 

Directly linked, and potentially to all SCICOM steering groups. 
Science Impact and Publications Group would be interested in 
bibliometric and citation analysis. 

Linkages to other 
organizations 

None at present 
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